Rubix Whitepaper

rubix

The Objectchain

Technical Whitepaper
Version 1.10
Jan 09, 2024

https://github.com /rubixchain/rubixgoplatform

Pg. 1

https://github.com/rubixchain/rubixgoplatform

Rubix Whitepaper

Abstract

The Rubix Objectchain protocol is a deterministic state-machine that is designed to address the
scale, cost, and privacy shortcomings of blockchain protocols that rely on one sequentially
organized chain (monolithic) of all global transactions. The protocol divides the global state-
machine into a large, but finite number of state-machines called Objectchains. While each
Objectchain maintains one state, together all Objectchains represent a globally accessible
singleton state that is immutable. This paper explains various components that make up the
protocol.

Blockchain protocols such as Bitcoin® & Ethereum® in general achieve a globally accessible
singleton state by organizing all global transactions sequentially as blocks (each block having a
finite number of transactions) and organizing the blocks as a hashchain. Such blockchain
protocols require exhaustive mining-based Proof-of-Work (PoW) consensus algorithms to secure
the state, which results in high latency, low throughput, and high transaction costs. While the
Proof-of-Stake (PoS)’ consensus protocols may alleviate the energy & throughput issues
associated with the PoW consensus, PoS protocols suffer from concentration (nodes with higher
existing stakes may continue to gain larger voting power), security (“nothing-at-stake” &
impersonation risks). Further, both POW & PoS protocols require every node to store the entire
global state, which results in significant storage & computational inefficiencies.

In contrast to the sequential transaction architecture of blockchains, Rubix Objectchain
processes transactions in an asynchronous parallel manner. Each transaction achieves finality on
its own without waiting to be pooled with unrelated transactions.

Objectchain

The Rubix global state will be made of at least 51.4 million Objectchains. Each Objectchain is
bound by one unique utility token (alternatively described as a digital utility tool). An Objectchain
Oris made of all transactions that use token Tn to confirm. All transactions within an Objectchain
Or are validated individually and sequentially. However, transactions of different Objectchains
are validated asynchronously and parallelly.

Objects

Object is the basic unit in the Rubix network. An Object can be a native utility token, asset token,
data token, smart contract or identity (DID). These Objects are described in detail in the
subsequent sections. Every Object, once created on the network, has genesis & its own
Objectchain. The Objectchains can scale in parallel asynchronously, but always together form
one global state at any point of time.

Tokens

Every transaction in the Rubix network is bound to one or a set of native utility tokens. There are

three types of tokens: asset tokens, data tokens and utility tokens. There will be about 51.4

Pg. 2

Rubix Whitepaper

million native utility tokens (named Rubix or RBT tokens). Asset tokens represent both (a) unique
digital assets like tickets, coupons, credits, vouchers or collectibles and (b) the digital form of any
real-world assets like land, shares, vehicle etc.. Data tokens represent the underlying unique data
objects that are stored on the chain. Asset and Data tokens are Non-Fungible Tokens (NFT) much
like Ethereum’s ERC721 tokens. They are unique and cannot be interchanged. Such tokens do
not add any value on its own to the network and hence are not limited in supply nor are restricted
in creation. When compared to its Ethereum model ERC 721, Rubix asset tokens are more
dynamic. Unlike ERC721 which uses a parameter “value” during the creation itself, Rubix asset
token’s value can vary during the life, depending on the underlying utility token(s) value. Rubix
asset and data tokens are bound to the Objectchains with the help of the utility token(s) (RBT).
An asset token A bound by utility tokens worth x units holds its price value at x. In the next
transfer of token A;, let us assume it is bound to a transaction with utility tokens worth y units;
the value of the Asset token Ai then changes to y units. Thus, in Rubix platform, the current value
of any Asset token depends upon the earlier transaction it was involved in. If an Asset token has
not been transacted even once in the network, it effectively holds no value in the network. The
properties of Asset tokens described in this para apply to Data tokens as well.

Rubix native utility tokens (RBT) are capped at about 51.4 million in total. With Rubix’s
breakthrough Objectchain architecture, the network does not require expensive miners or
overpowering stakeholders with proof of stake protocols to maintain the network integrity.
While a small portion of the tokens (56 in total) are pre-created to facilitate faster bootstrapping,
all except the 56 tokens are mined by the nodes in the network. Since a full Rubix node can be
set up even on a laptop with basic specifications, most computing nodes in the world would be
eligible for being a miner.

RBTs are digital utility tools

The purpose of the Rubix network is to facilitate fundamental transformations in the way
business processes are conducted in several industries including e-commerce, social, data,
healthcare, advertising, media, financial services, payments, supply chain and ERP. The Rubix
public blockchain is designed to fundamentally change the way identity, data & business
processes are initiated, settled & recorded. RBTs are the digital utility tools that applications &
businesses need to gain productivity. Businesses can either purchase the RBT tools needed for
applications (capex), borrow (opex) or create by being validators (shared utility through security).
The fundamental difference between RBT tools & the existing software tools is that RBT software
tools are perpetual, reusable, saleable & have residual value. Fundamentally put forth, RBT
software tools can be created, owned or borrowed by businesses much in the same way they
deal with computer hardware & other factors of production like real estate and commodities.
Software tools until now have no transferable rights & therefore no resaleable value, hurting
business productivity. Rubix network changes the software and digital paradigm in a
fundamental manner. RBTs are neither securities nor crypto currencies. They are simply a
business utility like land and commodities that can either be transferred peer to peer or in any
form of trading platform.

Pg. 3

Rubix Whitepaper

Proof of Pledge (PoP)

Rubix introduces the Proof of Pledge (PoP) protocol where all Rubix nodes are eligible to be
validators (miners) & any node can be chosen as a validator (more on this explained later in this
paper). Rubix validating protocol is eco-friendly & carries a low carbon footprint. Mining also
means that nodes accumulate tokens in a decentralized & egalitarian method rather than by
aggressively concentrating hash power to mine tokens. The PoP consensus is detailed in the
subsequent sections.

Rubix is built to facilitate decentralized applications that power real world commerce at a
significant scale on a decentralized network. Early app developers can earn pre-created tokens
based on the velocity of transactions on their applications. Rubix consensus protocol deploys
validators who engage in a consensus process to achieve PBFT?, but the validators are not
essential to prevent double spending. Rubix validators are not needed to prevent double
spending (double spending is not possible in the Rubix Network) but are key to resolve forking
or to prevent denial of service. The validators enhance the robustness & reliability of the network
storing proofs & transaction data (referred to as mining). Hence the validators also can earn
utility tokens based on their proofs of pledge.

Rubix Network will generate a total of approximately 51.4 million tokens. Tokens are mined in
perpetuity, but with a long tail. The following conditions must be satisfied while pushing value-
based tokens into any distributed trustless network. Firstly, the tokens should be near finite in
supply; No node including from the Rubix core developers should be able to create additional
tokens, beyond the specified total supply. Secondly, each of the RBT tokens should be uniquely
identifiable and publicly verifiable at any point of time by all nodes.

While each RBT token is unique from another, they are all equal in their utility to validate
transactions. In other words, all tokens are fungible with each other. The utility of a token Ty is
also independent of the work done on the Objectchain Or (number of transactions validated on
the chain). For example, Objectchain Orx could be longer than Oy, but corresponding tokens Ty
and Ty are equal in their utility for validating a new transaction.

To keep the integrity of the network, it is important to verify the genuine ownership of each of
the RBT tokens. Rubix achieves this by representing its tokens in multi-hash format in the custom
version of the Interplanetary File System (IPFS)? protocol. Each of the hashes in the Rubix chain
is pushed into IPFS and committed.

Since IPFS follows content-based addressing, any alteration even on a single bit will result in an
entirely different hash value that will not be verified by any of the object chains.

Nodes

A Node looking to perform token transfer, validator or be a smart contract participant must join
the Rubix network. The ID of the node is published to the network via the Rubix network layer.
The transactions involving the node are automatically stored in the chain distributed database.
Since Rubix is a peer to peer protocol, nodes interact directly with each other through its end to
end encrypted network channel assuring data privacy at the network layer. Nodes running the

Pg. 4

Rubix Whitepaper

Rubix application distribute storage , computation and pledging responsibilities in the network
making Rubix more decentralized than monolithic chains.

Decentralized IDentity (DID)

Rubix DID is the unique identifier of nodes in the network. DID is self created and publicly
verified. Rubix DID is generated by standard ECDSA P-256 curve. The public key , which in the
Rubix ecosystem is termed as Decentralised Identity, is shared among peer nodes in the
network. Nodes can create digital copies of real world assets / data points / identifiers as Non
Fungible Tokens and link them to their DID.

Rubix Transaction

All Rubix nodes join the network to conduct transactions with each other. A transaction can be
(a) a digital contract that involves exchange of services or goods in return for exchange of other
services or goods (b) a digital contract that involves exchange of services or goods for exchange
of any medium of value such as fiat currency or simple transfer of native token.

At any given point of time, several peer-to-peer transactions are submitted to the Rubix network.
Transactions are processed in parallel independent of each other unless transactions involve
common peers. A transaction is initiated by one peer node. To initiate the transaction, the peer
node must use at least one RBT token. Depending on which RBT token (T;) is used by the peer
node initiating the transaction, the transaction is added to the corresponding Objectchain Or;. If
multiple tokens are used in a transaction, the transaction is added to multiple Objectchains.

Objectchain

An Objectchain Oriis a chain of all transactions bound by the utility token T; (note that there will
be a total of about 51.4 million RBT utility tokens in the Rubix Network). A small set of RBT
tokens are committed by the genesis node G. All Objectchains with the RBT tokens committed
in the genesis node G originate with the genesis node. All such RBT tokens are stored and
committed on the IPFS by the genesis node G. The node G’s ownership of such tokens is globally
verifiable. All those RBT tokens that are not pre-committed to the node G are mined by
validators. In such cases, once the RBT token is mined, the corresponding Objectchain of that
token starts with the validators node that has mined the token.

Pg. 5

Rubix Whitepaper

Token T4 Token To Token T3

P(A)->B P(X)-->Y P(G)->E

P(X),P(Y)-->Z P(G),P(E)-->T

P(G),P(E),P(T)-->P(S)

For Ty,P(C)-->D : Proof of Node C
holding Token T, is sent to D

Figure 3: Independent Objectchains of Tokens

Rubix Consensus Protocol

Rubix introduces the lightweight, low carbon footprint consensus protocol, a democratic and
decentralized Proof of Stake (PoS) variant. Validators perform work to validate the transaction
by verifying (a) the ownership of Objects or tokens in the transaction (b) resolve forks if any by
verifying the Objectchains. Validators also need to pledge RBT tokens to secure the chain. The
total amount of RBTs pledged by the validators should be higher than the value of the transaction
to be legit. Validators earn credits for pledging the RBTs to secure the network. Proof of Pledge
(PoP) is not the same as PoS. PoS requires validating nodes to stake native tokens continuously,
in order to validate & also to earn rewards. Further the power of the nodes with higher coin
stakes continue to increase, leading to more concentration.

PoP is different from PoS. In PoS, the entire network is secured by a set of validators, where the
number of votes is equal to the amount of native token staked. The stakers would return based
on the amount of native tokens staked. The issue with staking in monolithic chains is that
validators with the largest amount staked would continue to get more rewards and get bigger
over time. Concentration of larger validators would increase over time, eventually making the
chain more centralized. Since one monolithic chain is secured eventually by large validators or
pools, it is easier for malicious actors to hack their wallets (or keys). This also means higher
security risk.

On the other hand, with PoP, pledging is local to each Objectchain. Validators pledge their RBTs
to secure each Objectchain. Since different validators are securing different Objectchains, the
network is inherently more decentralized. The Rubix chain is therefore more decentralized and
more secure. Further, validators pledging each Objectchain can always revoke their pledge as
long as it is replaced by pledge from another set of validators.

Pg. 6

Rubix Whitepaper

Quorum Selection

In Rubixchain, quorum selection can be done in 2 days. In type 1 where nodes are in open Rubix
network a Pseudo Random Function (PRF) is used to determine the set of validators. The
validators are finalized if they have enough tokens for pledging. A new round of PRF is performed
until a group of 7 validators with required pledgeable tokens is found. In type 2 where nodes
are interacting within a subnet , the subnet can overwrite the rules of PRF and choose validator
sets deterministically.

Periodic Pledging

In Proof of Pledge , the validators' nodes pledge their tokens against the state of objectchain for
only a specific time interval. When a token is transferred (token state updated) , the validators
that verify this state change attest their pledge for this state only for a period 7 days. Note that
the validators need to pledge for state update of a token and not the entire object chain. By
pledging the validators are notifying the entire network that the previous state of token is
exhausted and thereby preventing double spending. After the 7 day period , a new self transfer
state update is initiated by the token owner which finds a new set of quorum to pledge state for
the next interval. Tokens in the rubix network are advised to perform a new state sync function
call every 7 days in order to have a set of validators pledge against the new state.

Proof credit Accumulation

As explained in the above section, credits are earned via periodic proof of pledge consensus
algorithm. The calculation of credits depends on how long the state was pledged by the
validators. In scenarios where a token is not transferred within the pledge interval (7 days) , the
validators earn one whole credit. Whereas in scenarios where a token is transferred within 7
days, only a fraction of credit will be accumulated. The net credit accumulation per token per
day is 1 credit per periodic interval.

Since type 1 (open network) quorum operations involve more operations and makes the network
truly democratic and decentralized , the transactions performed in type 1 network earn
maximum credits per transaction (up to 1 credit per token for 7 days) . The incentive for quorum
nodes to take part in consensus is solely to earn credit and contribute for network growth.
Whereas in type 2, a subnet of systems (especially enterprise applications built on rubix) can
overrule the PRF and select the validator from a predetermined set. This is advisable for
networks that require high tps, low Round Trip Time (RTT) in communication. Note that the
type 2 validator nodes can also participate in open network quorum selection and be part of
maximum credit yielding transactions. In addition to this, subnet validators get a centi credit
which is 1/100th of a credit point. At the time of mining verification, mining validators can verify
the type of quorum selection and count credits accordingly.

Mining : Conversion of proof credits into RBT tokens

Each validator in the Rubix transaction stores the proofs to secure the Objectchain. By burning

Pg. 7

Rubix Whitepaper

energy on their computing systems, using the memory to store the proofs & pledging RBTs to
secure the transactions, validating nodes participate in securing the Rubix network. In reward
for the proofs of pledge, each validating node mines a new RBT token after earning a certain
threshold of proof credits. The conversion of proof credits into a RBT token is a new transaction
in the Rubix Network undergoing a consensus of its own. The proof credits needed to mine a
new token are set initially lower, but increase subsequently with the difficulty level needed to
mine is set gradually higher in perpetuity. The number of proof credits required to mine a new
RBT token is tabulated in Annexure 1 (the threshold levels, t, are tabulated).

Mining is a special native NFT of Rubix network which can track and publish the list of mined
tokens so far. The mine NFT objectchain consists of an iterative proof of each time a new RBT is
mined and the credits used to mine the RBT.

Steps of Mining Procedure Explained

1. Rubix native mining NFT consists of a list of all tokens mined so far and credits so far.

2. The mined tokens list helps in identifying the token to be minted next. The tokens follow
structure: hash (token level + token number).

3. When a node accumulates enough credits to mine new tokens, it calls mine operation in
the Mining contract that performs 3 operations (a) initiates a consensus mechanism
where the quorum/validators verify credits and calculate credit points. (b) calculates the
next token level and number to be minted (c) Validators pledge for token minting transfer

4. Once the token is minted successfully, the contract is automatically updated with credits
exhausted in mining procedure and also increment the token number

Double spending

Double spending is not possible since any node wishing to enter a transaction to acquire token(s)
can verify if the token is committed by only one node or by multiple nodes at any point of time.
If the token is also committed by another node which is not part of the transfer, acquiring node
can verify easily and get alerted of a possible attempt to double spend.

Say C is the owner of a token (sole committer on Rubix chain). A transfer’s a token to D (C
uncommits and D commits). This makes D new owner of the token. If C were to make a digital
copy of the same token and commit again, there will be two committers of the same token C
and D. Now when a third node E wishes to acquire the token from the legitimate owner D, E
finds out that two nodes C and D are committed to the token. Node E will not proceed with the
transaction unless C and D provide further proof. Hence double spending is not possible.

There is no economic benefit for C to fraudulently commit the token again as C is not able to
transfer the same token twice.

While double spending is easily prevented in the Rubix Objectchain protocol, there is a possibility
that a malicious node can initiate forks to carry out denial of service or spam attacks. Denial of

Pg. 8

Rubix Whitepaper

service attacks are possible if user create a fake node and transfer same token to fake node. Say
node C create fake nodes C’ just to prevent F from transferring token further. In such cases, node
F will challenge node C’ to provide it’s Objectchain. The Objectchain of node C’ will be P(G) > P(A)
> P(B) > P(C). However, any node in the network can determine where the fork(s) occurred. The
nodes initiating fork & the corresponding validators can easily be determined.

Double Spending Prevention by Validators Locking Token State

Validators for a transfer from A to B for a token T marks the current token state of Token (state
where A was receiver) as exhausted in the network. This allows other genuine nodes to identify
and prevent a double spend attempt by A.

Preventing Sybil/DoS Attacks

Any honest node will find it easy to enter a double spending transaction in the Rubix Network.
However, malicious nodes that participated in a previous transaction in the chain could create
sybil nodes & attempt to fork the chain (a node which has not been part of the Objectchain can’t
fork).Such forking will not result in a direct benefit for the malicious forking node — preventing
an honest token holder to transact further could be attempted though. However, Rubix Network
protocol makes forking economically impossible using the concept of validators as discussed
earlier in this paper. No validator will approve the consensus of a forking transaction due to the
risk of losing the RBTs pledged to secure the transaction. The malicious node setting up other
Sybil nodes to become validators would also find it economically impossible to get the forking
approved. Since, it is easy for all the nodes in the Network to know the forking nodes & the
validators that assisted in the transaction, the risk of being blacklisted for further transactions is
an additional deterrent. Also, given the decentralized nature of the Rubix Network with little
concentration, a global DoS attack to halt the network is almost impossible to succeed. As Rubix
Network can expand to billions of full validating nodes, a coordinated global attack is highly
impossible due to (a) lack of net economic gains & (b) the need to set up an extremely large
number of independent computing nodes.

P(G) P(G) P(G) P(G)

P(A) P(A) P(A) P(A)
P(B) P(B) P(B)
P(O) P(O)
P(D)

P(G) P(G)
P(A) P(A)
P(B) P(B)
P(O) P(O)
P(C')

Figure 4: Fork Detection

Pg. 9

Rubix Whitepaper

Creditchain: Securing the proof credits

The Proof of Pledge (PoP) algorithm is a key component of security in the Rubix protocol.
Ensuring the proof credits are legit & secure is a key consideration in the protocol. In order to
ensure that the proof credits a of are valid, any node in the network (including the transacting
parties in the new transaction & new quorum) can verify if the creditchains presented by the
previous quorum members are not tampered. Since the new receiver & the quorum members
are honest, they will verify if the creditchain provided by each of the validators is accurate by
fetching the quorum list from the previous transaction’s sender. Once acquiring the quorum list
of the previous transaction, their signatures in the previous transaction can be verified. If the
signatures match, then the legitimacy of the proof credit count of the concerned validator is
determined to be accurate. It is evident any node in the network can ascertain if the credits
declared by each validator are valid by simplifying cross checking the credit chain with the
previous transaction details.

Staking for mining

Conversion of proof credits to RBT tokens is similar to a regular transaction in the Rubix network
as explained earlier in this whitepaper. Additionally though, nodes converting proof credits into
RBT tokens need to pledge RBT token for a minimum number of transactions of the newly minted
RBT token. Technically, the RBT tokens are pledged temporarily, not staked as such.

Once the minting node submits new proof credits to mine, the validator nodes signing the
minting transaction will need to cumulatively pledge (or stake) 1 RBT token. The pledged RBT
token by quorum is not transferable for at least 4*h transactions where h is the height of the
difficulty level at which the minting transaction is initiated. For example, at level 4, h = 64, hence
pledged tokens will be locked for the first 256 transactions of the newly minted token. Without
proof of the staked tokens, the newly minted token can’t be transferred.

The staked tokens are automatically released for transactions after 4*h transactions or the
completion of the difficulty level, whichever occurs earlier. The staking process significantly
increases the security of mining in the Rubix chain. What happens if the node looking to mine
credits does not have quorum nodes with at least one token to stake? The quorum can be
populated by borrowing the nodes that have the required tokens to stake for 4*h transactions.

PBFT Consensus

Consensus involves agreement between multiple parties in a distributed network. This can be
achieved by running a single chain with blocks created one after the other as an agreement to
the previous blocks on the chain. However, such chains never reach a state of finality. Plus, the
scalability factors for all the nodes to synchronize with other peers in the network makes these
models inoperable. In Rubix Network, consensus protocol is run for each transaction
independently. This way each transaction can be independently verified, thereby reducing the
scope for forks.

Pg. 10

Rubix Whitepaper

Rubix Consensus involves a Sender (S), Receiver (R), seven validator nodes (vi, V2, V3, Va4, Vs, Vs,
v7 (7 as per PBFT rule). Quorum Initiator creates the Transaction Data in the following way:

Transaction Data = SHA3-256(Sender’s WalletID + Token(s) + Objectchain Height)

Steps:

1. Sender picks quorum members vi, vz, V3, va, Vs, Vs & v7. The set of validators can be picked
from any public set of validators available on the Mainnet of the Rubixchain or from any
pre-determined subnets.

2. Sender calculates the SHA3-256 hash H of T, Sy and the Objectchain height O, and sends
H, Sender’s Signature from H and Receiver ID, Ry,to all the quorum members.

3. The quorum members verify for unique ownership and state of token and signs using its
private key. This way the quorum agrees to the transaction of the sender and the token.

4. When 5 or more signatures are received by the sender, the node performs Peer-Peer
authenticated token transfer and IPFS Committing & Uncommitting.

5. Once the PBFT count is reached, the Rubix Network consensus is successful.

6. Subsequent to the successful consensus, the successful validators store the proof &
transaction data, along with the latest proof credit count.

Simple token transfer transaction

Let us say node A would like to enter a transaction with node B. To validate the transaction, A
needs at least one token (more than one token may be needed in certain transactions). For the
current illustration, let us say one token is needed. A will enter a transaction to procure the
required token Tx from the genesis node G. Nodes G and A enter a Peer-Peer transaction. Before
entering the transaction, A requests the IPFS hash of the token Ty from G. A verifies if node G
owns the token by checking if G and only G has committed Ty on the IPFS. If true, A proceeds to
complete the transaction with G. If A finds that node(s) other than G found committing Ty, A will
request for additional proofs of ownership from G and other nodes who are found committing
Tx.

If no fork is found and G is the sole committer of Ty, then G proceeds to complete the transaction
with A.

1. For a user in the Rubix network, after successfully completing the DID generation , a gossip
protocol broadcasts the Public information across the network.

2. Initially the sender sends the token’s IPFS hash to the receiver and the receiver
acknowledges the availability of the token

3. The token’s latest proof (ObjectChain) is known only to the sender and therefore, after the
acknowledgement the latest ObjectChain is sent to the receiver for picking challenge-
response positions.

Pg. 11

Rubix Whitepaper

4. The Objectchain represents the universal proven state of each token, which is publicly

verifiable.
° T ° T G T ‘ T 6 -------------------
[P | P(G) P(G) P(G) P(®)
ProofChain P(A) P(A) P(A) P(A)
of Token T P(B) P(B) P(B)
P(C) P(C)
P(D)

Figure 6: Objectchain Formation

5. If token T is purchased from Rubix genesis node G by user A. Node A gets empty object
chain from G creates a new chain with proof P(G)

6. Now, when user A transfer token to user B, the proof for this transaction P(A) is appended
to the existing Objectchain. Hence the current Objectchain contains two proofs, P(G) > P(A)

7. The sender calculates hash the transaction details which includes information about
token(s) , sender, receiver and validators.

8. Receiver information (R) and Token information (T) are used in hash calculation to ensure
that the agreed token is being transferred to the recipient.

9. Forinstance, Aistransferring a token, T to B [A (T)—> B]. The inputs for the hash calculation
are B, Tand P.

10. Any other user out of this transaction, C cannot claim token T has been transferred to C by
A[A (T)—>C].

11. B cannot claim A has transferred some other token by A [A (~T)—>C].

12.Sender A picks a set of 7 nodes as validators by Rubix Pseudo Random Quorum Selection
Algorithm and shares the transaction information with them. The Validators check for
unique ownership and verify the state exhaust flag before approving the transaction.
Approving a transaction involves nodes pledging tokens that are cumulatively equal to
transaction value.

13. Once Sender receives 5 approval votes from the validator group , the same data is shared
to Receiver who verify the sender and quorum signatures and pledges.

14. The token to be transferred is uncommitted by the sender and committed by the receiver
thereby claiming the ownership of the token.

The transaction proof generated in the process detailed from Step 1 to Step 20 is deterministic
and highly secure. The proof confirms that A has received Tx from G. A can only claim that it
received Tx from G and not any other token Ty. This is because A will not be able to produce the
knowledge of the 256 bits of G that correspond to token Ty..

After the successful completion of the transaction Tga, A creates Objectchain P(G) and both G
and A store the Objectchain. When A further transfers token Tx to node B, the Objectchain

Pg. 12

Rubix Whitepaper

expands to P(G) + P(A) and nodes A and B store the updated Objectchain. When B further
transfers to C, Objectchain expands to P(G) + P(A) + P(B) and nodes B and C store the updated
Objectchain. The Objectchain continues to expand perpetually. Note that the updated
Objectchain is not propagated back to all the preceding nodes in the Objectchain.

The Objectchain for token Ty is constructed like that of Tx explained so far. The Objectchain
represents the universal proven state of each token, which is publicly verifiable.

IPFS in the Rubix Network

IPFS plays a key role in Rubix network due to below properties of IPFS:
1. Immutable objects represent files
2. Objects are content addressed by cryptographic hash

3. Distributed Hash Table (DHT) to help locate data requested by any node and to announce
added data to the network

4. IPFS removes redundant files in the network and does version control

5. Content addressing of the data stored in IPFS, every file name is unique if there is even a
single character change in the content of the file

6. Private IPFS that can only be accessed by certain entities

7. Committing of the data - avoids double spending

Smart Contracts

Smart contracts represent sophisticated business logic encapsulated in machine-readable
formats, typically articulated through programming languages. These contracts are executed
within a network’s nodes, operating in a deterministic, sandboxed environment.

Rubix smart contracts are treated as a specialized form of Non-Fungible Tokens (NFTs)
possessing a dynamic state. Every invocation of a contract function leads to an update in this
state, which is meticulously recorded and preserved on the Contract Object Chain. This
dedicated chain furnishes an immutable ledger, ensuring transparent and tamper-proof
documentation of each contract execution. To ensure versatility and adaptability, Rubix smart
contracts are crafted in prevalent web2 languages, including Rust, JavaScript, and Golang.
These contracts are subsequently executed within a WebAssembly (WASM) environment.

Pg. 13

Rubix Whitepaper

Rubix network

pubsub nodes

pubsub nodes
pubsub nodes

Smart contract
bdoo] pubsub nodes

Orchestration
code

1. generateContract(filelocation , RBT)

roturns contractTokon , ContractTokenChain

contractowner
node

bytecode

yaml
1 check if contract token is
alre: ieployed sender :
2. check genesis RBT is owned by receiver
owner

quorum :
3. initiate consensus transactiontype :
linkedtoken

E
e

genesis
(RET linked)

ContractTokenChain

sender
receiver :
quorum :
transactiontype :
linkedtoken : l
contractinput
ContractTokenChain
sender -
receiver :

2. PublishContract
quorum :

(contractTokenhash) et relt
linkedtoken

contractinput :

S

t:

previousbiock

3. deployContract

hain last Block}

(contractiokenhash)
IPFS PUBSUB : . data:
Smart e —
contract P ————
vm B ——
s — pubsub nodes ‘
pubsub nodes ‘ _——
pubsub nodes e
pubsub nodes orerararpt
S rovousock
Smart el pubsub nodes i
contract —
M sander
wnSaciomye
praomock

Pg. 14

Rubix Whitepaper

4. executeContract (contract token ,
contract token chain stat
function ,
input)

Contract
Participant
Node

ContractTokenChain

data: contractTokenCh:

last Block)

pubsub nodes

pubsub nodes
| pubsub nodes.

pubsub nodes.

IPFS PUBSUB : type: requestState data : requesterpeerid

5. FetchContrtact(contract token)

======

Smart contract Life Cycle

Rubix protocol is committed to improve adaptability of blockchain technology. Along with its
revolutionary proof of pledge protocol aided by zero gas fee transactions , Rubix focuses on
making dApp deployment and execution easier for our ecosystem. With WebAssembly(WASM)
based smart contracts, existing web2 codebases and developers can migrate their codebase
and knowledge into Rubix with ease. WebAssembly (WASM) is a binary instruction format that
allows code to be executed at near-native speed in a safe , sandboxed and deterministic
manner across different platforms. Smart contracts can be written in languages that compile to

WebAssembly, such as Rust and C/C++, and then executed on a blockchain platform that
supports WASM.

Here are the steps in executing WASM in Rubix

Pg. 15

Rubix Whitepaper

1. Writing Smart Contracts: Smart contracts are written in high-level programming
languages like Rust, GoLang or C/C++. These languages offer the flexibility and
expressive power of high-level languages while compiling down to WebAssembly
bytecode.

2. Compiling to WebAssembly: Once the smart contract code is written, it is compiled to
WebAssembly bytecode. Compilers like rustc for Rust or Emscripten for C/C++ can be
used to generate WebAssembly binaries from the source code.

3. Deployment on Blockchain: The compiled WebAssembly code is then deployed onto a
blockchain platform. The contract code, along with any necessary metadata, is stored
on the blockchain.

4. Execution: When a user or another contract interacts with the deployed smart contract,
the contract’s functions are called via transactions. These transactions contain input
data that specifies which function of the contract to execute and with what parameters.

5. Validation: The transaction is validated by the blockchain nodes to ensure it follows the
rules of the blockchain protocol. Once validated, the transaction and the associated
smart contract function call are processed by the nodes

6. State Change and Output: Smart contracts can read data from the blockchain’s state
and modify it as per the logic defined in their functions. Smart contracts can also
produce output data, which is typically returned to the caller after the contract function
execution is complete. The smart contract is executed on the DApp side. The DApp
should have an api endpoint which must be passed as a parameter to register-callback-
url api. This api registers the api endpoint in the node. Once the endpoint is registered,
each time an execution happens on the object chain, as per the logic in the smart
contract deployed, the states in each of the subscribed nodes get updated.

Once deployed, the logic of a smart contract, represented by its WebAssembly bytecode, is
immutable. This means it cannot be changed. If you need to update the contract’s logic, a new
version of the contract needs to be deployed.

To learn more about smart contracts and APIs to interact with Rubixchain, please visit
https://learn.rubix.net/smartcontract/

Pg. 16

https://learn.rubix.net/smartcontract/

Rubix Whitepaper

Objectchain for Smartcontracts and Data Tokens

Rubix smart contracts are programmable NFTs that hold a sequential and deterministic proof of
state execution. The sequential proofs provide irrefutable logs of a list of related events, be it as
raw data or calls to the linked smart contract function. In case of smart contract NFTs (dynamic
NFTs) , these proofs can be rerun by any node in the network to arrive at the present state of
smart contract token. This means a node that syncs to the network can fetch the proofs, execute
them one after another in its sandboxed environment and calculate the current state of contract.
For static NFTs or data tokens in Rubix, the state chain represents a change of ownership or value
of the NFT.

Pledging for Smartcontracts and Data Tokens

The value of a NFT is determined by the owner or creator of the NFT. For data tokens the value
of NFT changes every time the ownership of the token is changed. Since every state update is
performed with a linked RBT, pledging security for data token NFTs are secured by underlying
RBT transfer.

In case of smart contract NFTs, the token ownership is never transferred. The state changes to
the NFT object chain include the sequence of smart contract function calls. The smart contract
provider needs to lock an amount of RBT to the contract (making RBT non transferable until NFT
is burnt) that quantifies the total value of data points linked to the smart contract. These are
customizable figures and depend on terms between smart contract apps and consumers.

Example : If a smart contract app charges 0.001 RBT for 2000 write operations to its consumers
, the app needs to lock 20 RBTs to cover the value of data.

Rubix Network and Private IPFS

Every node who joins the Rubix network will be part of a private IPFS and therefore they are not
connected to the external IPFS network and communicate only to those nodes connected to this
private IPFS Swarm. All data in the private network will only be accessible to the known peers on
the private network.

LIBP2P Protocol

LIBP2P is a modular network stack of protocols, libraries and specifications that enable
development of peer-to-peer network applications. A peer-to-peer network in which the
participants of the network communicate with each other directly without involvement of a
privileged set of servers as in the case of a client-server model. LibP2P uses public key
cryptography as the basis of peer identity, serving two complementary purposes. Each peer is
given a globally unique name (PeerID) and the PeerID allows anyone to retrieve the public key
of the identified peer enabling secure communication between the peers where in no third party
can read or alter the conversation in-flight. To route the data to the correct peer, we need their

Pg. 17

Rubix Whitepaper

PeerID and the way to locate them in the network which is done in LibP2P using Peer Routing
(discover peer addresses by leveraging the knowledge of other peers). Peer routing in LibP2P is
done using Distributed Hash Table (DHT) (iteratively route requests to the desired peer ID using
Kademlia routing algorithm).

LibP2P module is used in the Rubix network for communication of data from one end to another.
The Rubix network traffic is tunneled through LIBP2P stream. We add all nodes who are part of
the Rubix network, to a single private swarm network of IPFS. The communication over the
internet from initiator to the notaries and participants during the consensus and from initiator
to the receiver during the token transfer are performed using the IPFS listen and forward which
is part of the libp2p library.

LIBP2P
1. Listen for Incoming Streams
> ipfs p2p listen /x/<applicationName>/1.0 /ip4/127.0.0.1/tcp/<port>

2. Forward

> ipfs p2p forward /x/<applicationName>/1.0 /ip4/127.0.0.1/tcp/<port>/p2p/<peerid>
SwarmConnect — Connection to Peer node either directly or through Realy service

1. Relay
> ipfs swarm connect /p2p/<BootstrapNode>/p2p-circuit/p2p/<peerid>
BootstrapNode — multiaddress of the bootstrap for relaying

Peerid - ID of the node to connect

2. Direct Connection

> ipfs swarm connect <Node>

Node - multiaddress of the node to connect

3. Swarm Peers
> ipfs swarm peers

List of the peers a node can connect (fetched from DHT)
Token Access Operations and Commands

Add

> ipfs add <tokenname>

Returns Multihash of the file for reference

Get

> ipfs get <tokenhash>

Pg. 18

Rubix Whitepaper

Fetches the file from IPFS referenced using Multihash

Pin
> ipfs pin add <tokenname>

Pins the token— will not be removed during garbage collection

UnPin
> ipfs pin rm <tokenname>

Unpins the token—removed during garbage collection

References

1)

2)

3)

4)

5)

6)

7)
8)

9)

10)

11)

Nakamoto, S. (2008) Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf

Benet, Juan. "Ipfs-content addressed, versioned, p2p file system." arXiv preprint
arXiv:1407.3561 (2014).

Castro, Miguel, and Barbara Liskov. "Practical Byzantine fault tolerance." OSDI. Vol. 99. No.
1999. 1999.

M. Tompa and H. Woll, How to share a secret with cheaters, Journal of Cryptology, Vol 1,
Issue 2, Aug. 1988 https://dl.acm.org/citation.cfm?id=56181

Goldreich, Oded, and Yair Oren. "Definitions and properties of zero-knowledge proof
systems." Journal of Cryptology 7.1 (1994): 1-32.

US Patent 009800408: Method of generating secure tokens and transmission based on
(TRNG) generated Tokens and split into shares and the system thereof.

https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ

Keedwell, A. Donald, and Jozsef Dénes. Latin squares and their applications. Elsevier, 2015.

Wood, Gavin. "Ethereum: A secure decentralized generalized transaction ledger."
Ethereum project yellow paper 151.2014 (2014): 1-32.

Renvall, Ari, and Cunsheng Ding. "A nonlinear secret sharing scheme." Australasian
Conference on Information Security and Privacy. Springer, Berlin, Heidelberg, 1996.

Moni Naor and Adi Shamir. Visual cryptography; Workshop on the Theory and Application
of Cryptographic Techniques. Springer. 1994, pages 1-12; and Guy Zyskind, Oz Nathan, and
Alex Pentland. Enigma: Decentralized Computation Platform with Guaranteed Privacy;
preprint arXiv: 1506.03471, 2015.

Pg. 19

https://bitcoin.org/bitcoin.pdf
https://dl.acm.org/citation.cfm?id=56181
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ

Rubix Whitepaper

Annexure 1: Difficulty Threshold Table (Proof Credits)

Cumulative tokens

Tokens awarded

Level ('000) ('000) PCs/token
0 0.056 0.056
1 4,300,000 4,300,000 0.125
2 6,725,000 2,425,000 16
3 9,028,750 2,303,750 32
4 11,217,313 2,188,563 64
5 13,296,447 2,079,134 128
6 15,271,625 1,975,178 256
7 17,148,043 1,876,419 512
8 18,930,641 1,782,598 1,024
9 20,624,109 1,693,468 2,048
10 22,232,904 1,608,795 4,096
11 23,761,259 1,528,355 8,192
12 25,213,196 1,451,937 12,288
13 26,592,536 1,379,340 18,432
14 27,902,909 1,310,373 27,648
15 29,147,764 1,244,855 41,472
16 30,330,375 1,182,612 62,208
17 31,453,857 1,123,481 93,312

Pg. 20

Rubix Whitepaper

Cumulative tokens

Tokens awarded

Level ('000) ('000) PCs/token
18 32,521,164 1,067,307 139,968
19 33,535,106 1,013,942 209,952
20 34,498,350 963,245 314,928
21 35,413,433 915,082 472,392
22 36,282,761 869,328 590,490
23 37,108,623 825,862 738,113
24 37,893,192 784,569 922,641
25 38,638,532 745,340 1,153,301
26 39,346,606 708,073 1,441,626
27 40,019,275 672,670 1,802,032
28 40,658,312 639,036 2,252,541
29 41,265,396 607,084 2,815,676
30 41,842,126 576,730 3,519,595
31 42,390,020 547,894 4,399,493
32 42,910,519 520,499 4,949,430
33 43,404,993 494,474 5,568,109
34 43,874,743 469,750 6,264,122
35 44,321,006 446,263 7,047,138

Pg. 21

Rubix Whitepaper

Cumulative tokens

Tokens awarded

Level ('000) ('000) PCs/token
36 44,744,956 423,950 7,928,030
37 45,147,708 402,752 8,919,034
38 45,530,323 382,615 10,033,913
39 45,893,807 363,484 11,288,152
40 46,239,116 345,310 12,699,171
41 46,567,160 328,044 14,286,567
42 46,878,802 311,642 15,179,478
43 47,174,862 296,060 16,128,195
44 47,456,119 281,257 17,136,207
45 47,723,313 267,194 18,207,220
46 47,977,148 253,834 19,345,171
47 48,218,290 241,143 20,554,245
48 48,447,376 229,085 21,838,885
49 48,665,007 217,631 23,203,815
50 48,871,757 206,750 24,654,054
51 49,068,169 196,412 26,194,932
52 49,254,760 186,592 26,587,856
53 49,432,022 177,262 26,986,674

Pg. 22

Rubix Whitepaper

Cumulative tokens

Tokens awarded

Level ('000) ('000) PCs/token
54 49,600,421 168,399 27,391,474
55 49,760,400 159,979 27,802,346
56 49,912,380 151,980 28,219,381
57 50,056,761 144,381 28,642,672
58 50,193,923 137,162 29,072,312
59 50,324,227 130,304 29,508,397
60 50,441,500 117,273 29,951,023
61 50,547,047 105,546 30,400,288
62 50,642,038 94,992 30,856,292
63 50,727,530 85,492 31,319,137
64 50,804,473 76,943 31,788,924
65 50,873,722 69,249 32,265,758
66 50,936,046 62,324 32,749,744
67 50,992,138 56,092 33,240,990
68 51,042,620 50,482 33,739,605
69 51,088,054 45,434 34,245,699
70 51,128,945 40,891 34,759,385
71 51,165,747 36,802 35,280,775

Pg. 23

Rubix Whitepaper

Cumulative tokens

Tokens awarded

Level ('000) ('000) PCs/token
72 51,198,868 33,121 35,809,987
73 51,228,677 29,809 36,347,137
74 51,255,506 26,828 36,892,344
75 51,279,651 24,146 37,445,729
76 51,301,382 21,731 38,007,415
77 51,320,940 19,558 38,577,526
78 51,338,543 17,602 39,156,189

Every subsequent level, token supply declines by 10% and threshold level increases by

1.5%

Pg. 24

